THE COMPARATIVE ANTIBACTERIAL ACTIVITY OF O-CHLOROMERCURIPHENOL AND PHENYLMERCURIC ACETATE

By M. WOODBINE*

From the Biochemical Section, College of Technology, Manchester, 1

Received March 20, 1950

OF the organomercurial antiseptics, phenylmercuric acetate occupies an established place in both medicine and pharmacy and is favoured as a bacteriostatic agent of high efficiency and low relative toxicity. In common with other mercurial antiseptics, owing their mode of action to combination with sulphydryl groups, its functional efficiency may be revealed by discolouration of the product containing it by mercuric sulphide. Recently *o*-chloromercuriphenol appears to have established itself in spite of the lack of published work relating its worth to that of already established members.

The first reports of the antiseptic activity of o-chloromercuriphenol, synthesised by Whitmore and Hanson¹ and Neogi and Chatterji², were by Fargher, Galloway and Probert^{3,4}, who used it for protecting textile materials from fungoid attack. Hart and Anderson⁵ showed that the mercury derivatives of hydrocarbons and phenols were effective bacteriostatic agents, claiming o-chloromercuriphenol to be the most powerful of a series studied and, later, reported on the bactericidal activity of its derivatives⁶. On the other hand, however, McClusky and Swingle⁷ claimed that *sec*-amylcresol preparations were more effective than o-chloromercuriphenol, in the presence of plasma, against Grampositive cocci. Its use in antiseptic paper and fabrics is the subject of a patent⁸.

The antiseptic properties of the phenylmercuric salts, however, have been more extensively reported. Weed and Ecker⁹, for example, reported on the utility of the nitrate, synthesised by Otto¹⁰, owing to its lack of odour, colour, taste, staining and corroding properties, non-selectivity and non-inhibition in the presence of tissues and that aqueous solutions could be administered either *per os*, or parenterally. They also showed¹¹ that there was a decreasing activity from the nitrate through the chloride and bromide to the iodide. Birkhaug¹² confirmed Weed and Ecker's results on the nitrate, but Pyman and Stevenson¹³ showed that the "nitrate" previously used was the basic salt "merphenyl nitrate." PhHgOH.PhHg.NO₃. Phenylmercuric acetate and nitrate were introduced as contraceptives by Baker, Ranson and Tynen¹⁴. Berry, Jensen and Siller¹⁵ showed that 0.001 per cent. of phenylmercuric nitrate provides a wide margin of safety for sterilising thermolabile substances, a concentration safe for use, as shown by the toxicological studies of Wien¹⁶

^{*} With the assistance of M. W. CHEESEMAN.

The practical work described in this paper was done at the Wellcome Research Laboratories, Beckenham, Kent.

O-CHLOROMERCURIPHENOL AND PHENYLMERCURIC ACETATE

while, according to Fust¹⁷, 0·1 per cent. of phenylmercuric borate is adequate for the sterilisation of fæces, urine, sputum and linen.

EXPERIMENTAL

Direct comparisons of the traditional type between the two compounds are illustrated in Tables I and II. These are derived by exposing constant inocula of the selected organisms to falling concentrations which vary by increments of 10 to 100 per cent. Evidence of bacteriostatis, at dilutions no longer lethal, is seen with both compounds in the case of Gram-positive but not with the Gram-negative organisms.

TABLE I

Inhibiting concentration, in Mg./100 ML. Of nutrient broth medium, of phenylmercuric acetate and o-chloromercuriphenol when exposed to constant inocula of the organisms and incubated at 37.5° C.

		Inhibiting dilution in mg./100 ml.				
			curic acetate	o-Chloromercuriphenol		
		18 hours	48 hours	18 hours	48 hours	
Streptococcus pyogenes	CN 10	<0.00012	0.0012	0.0040	0.031	
Staphylococcus aureus	CN 491	0.00025	0.00195	0.0010	0.012	
Eberthella typhosa	CN 512	0.062	0.062	0.125	0.125	
Bacterium coli	CN 348	0.125	0.125	0.250	0.250	
Pseudomonas æruginosa	CN 200	>0.250	> 0 · 250	>0.250	> 0 · 250	

TABLE II

Inhibiting dilution in nutrient broth at which growth of *E. typhosa* occurred at $2\frac{1}{2}$ minutes but not at 5 minutes and the ratios of bactericidal activity of *o*-chloromercuriphenol and phenylmercuric acetate in terms of phenol

	÷	Phenol	o-Cł	nloromercuriphenol	Phenylmercuric acetate
Inhibiting dilution		1/100	1	1/800	1/3200
Ratio with respect to phenol	•••	1	-	8	32

Much more information, however, may be derived from estimates relating the time of exposure to per cent. mortality, or its probit. In this way time-response curves may be derived and compared with the isolated observations on an unknown curve (Tables I and II). A convenient expression of the estimate is the LT50, or the time required to kill 50 per cent. of the inoculum (Withell¹⁸) and, where the slopes of the lines (b) are not parallel, use may be made of the concentration exponent (n) of Phelps¹⁹ which expresses, numerically, the power to which the concentration must be raised in order to give comparable rate of kill.

In cases where potent antiseptics are compared difficulties arise in estimating the low orders of time involved. An obvious solution is the

M. WOODBINE

choice, in the case of the mercurial antiseptics, of a resistant organism such as *Bacterium coli* (Stark and Montgomery²⁰), grown on a synthetic medium to minimise the reversal effects of proteins (Anderson and Hart⁶, and Mirimanoff and Masset²¹). MacLeod's medium²², with the addition of 0.2 per cent. of vitamin-free casein hydrolysate and 1.5 per cent. New Zealand agar gave readily counted colonies of *Bact. coli* after 48 hours' incubation at 37.5° C.

A second difficulty, caused by "carry-over" of bacteriostatic concentrations, is met by the inclusion of specific reversal agents such as glutathione (Fildes²³) and, of the substances available for this purpose, which include thioglycollic acid (Graydon and Biggs²⁴, Heinemann²⁵), cysteine hydrochloride (Smith, Czarnetsky and Mudd²⁶), cysteine hydrochloride and 2:3-dimercaptopropanol (B.A.L., or British Anti-Lewisite²⁷⁻³⁰), glutathione and 2:3-dimercaptopropanol are the most satisfactory (Table III).

Antibacterial concentrations of phenylmercuric acetate and o-chloromercuriphenol in the presence of falling concentrations of potential reversing agents using BACT. COL^{J} as test organism

		Inhibiting concentration in mg./100 ml.					
Concentration of reversing age	ent 1/1T	1/10T	J/100T	1/1M	1/10M	None	
Glutathione : Phenylmercuric acetate o-Chloromercuriphenol	> 2.50 2.5	1 · 25 2 · 5	0·31 0·62	0·075 0·15	0·018 0·037	0 0045 0 009	
Thioglycollic Acid : Phenylmercuric acetate o-Chloromercuriphenol	<0.001 <0.001	0.075 0.31	0·018 0·037	0·018 0·037	0·018 0·037	0·0045 0·0045	
Cystine HCl : Phenylmercuric acetate o-Chloromercuriphenol	0.62 0.31	0·075 0·018	0·018 0·009	0.009 0.0045	0.002 0.002	0·0045 0·002	
Cysteine HCl : Phenylmercuric acetate o-Chloromercuriphenol	0·15 0·62	0·075 0·009	0·018 0·009	0·009 0·018	0·0045 0·0045	0.002 0.002	
2,3-Dimercaptopropanol (B.A.L Phenylmercuric acetate o-Chloromercuriphenol):- <0·001 <0·001	0.62 2.50	0·31 2·5	0·15 0·62	0·037 0·31	0·018 0·037	

Calculation of the LT50 and concentration exponents using different organisms, substrates and temperatures justifies the conclusions that o-chloromercuriphenol is more active than phenylmercuric acetate in protein-free medium, but that this relationship is reversed in the presence of proteins (Table IV).

Acute Toxicity. The acute toxicity of the two compounds was determined by the intravenous and subcutaneous administration to groups of 10 mice of fresh solutions in distilled water. The estimates of LD50 were derived by plotting the logarithm of the dose against probit of mortality and the errors of the estimates evaluated graphically according

O-CHLOROMERCURIPHENOL AND PHENYLMERCURIC ACETATE

to Gaddum³¹. The results (Table V) show that, although phenylmercuric acetate is more toxic than o-chloromercuriphenol, the toxicities are of the same order.

Compound	Concentration	LT50 (sec.)	Concentration exponent (n)	Experimental conditions	
Phenylmercuric acetate	1/100T 1/1M	32·0 37·0	0.0631	Using Bact. coli, a tem- perature of 16°C, sterile distilled water - 0.01 mer	
o-Chloromercuriphenol	1/100T 1/1M	31 · 0 33 · 0	0.0271	distilled water + 0.01 per cent. thioglycollic acid for dilutions, and broth agar with 0.01 per cent. thio- glycollic acid for the counts	
Phenylmercuric acetate	1/10T 1/20T	39 · 0 102 · 0	0.4175	Using Staph. aureus, a tem- perature of 16.5°C., sterile distilled water for the dilu-	
o-Chloromercuriphenol	1/10T 1/20T	33·0 64·8	0 · 2931	tions and broth agar for the counts.	
Phenylmercuric acetate	1/100T 1/1M	30·6 243·6	1000-0	Using E. typhosa, a tem- perature of 16.5°C., sterile distilled water for the dilu-	
o-Chloromercuriphenol	1/100T 1/1M	31 · 2 99 · 6	0 · 5041	tions and broth agar for the counts.	
Phenylmercuric acetate	1/1M 1/10M	225 · 0 264 · 0	0.0694	Using Bact. coli, a tem- perature of 17.0°C., sterile distilled water for the dilu-	
o-Chloromercuriphenol	1/1M 1/10M	33·0 123·0	0.5714	tions and MacLeod's med- ium + agar for the counts.	
Phenylmercuric acetate	1/1M 1/10M	172·0 180·0	0.0591	Using Bact. coli, a tem- perature of 27.5 C., sterile distilled water + 0.01 per	
o-Chloromercuriphenol	1/1M 1/10M	212-0 512-0	0.2545	distinct water \div 0.01 per cent. glutathione for the dilutions and MacLeod's medium \div agar \div 0.01 per cent. glutathione for the counts.	

TABLE IV

CONCENTRATION EXPONENTS FOR PHENYLMERCURIC ACETATE AND *o*-chloromercuri-Phenol under different experimental conditions

TABLE V

TOXICITY OF PHENYLMERCURIC ACETATE AND *o*-chloromercuriphenol when administered by the subcutaneous and intravenous routes

Compound		Route	LD50 (g./kg.)	$\frac{\text{Limits of error}}{(P=0.99)}$
Phenylmercuric acetate	 •••	intravenously subcutaneously	0·019 0·027	86116 87120
o-Chloromercuriphenol	 •••	intravenously subcutaneously	0·023 0·036	84—117 93—116

DISCUSSION

Solubility, odour, staining and corrosive action together with direct comparisons of antibacterial activity of the traditional type (Tables I and II) have been used as criteria for the evaluation of potential antiseptics. The differentiation of closely related antiseptics possessing similar properties and the comparative assessment of bactericidal action when they are rapidly effective in high dilution presents many problems, one of which, for example, concerns the extent to which the comparative bacteriostatic activity with constant inocula (Table I) is applicable to those ratios used in pharmaceutical preparations³².

M. WOODBINE

The greater amount of information which may be derived from estimates relating time of exposure to percentage mortality and its convenient expression in the LT50 is of particular use in evaluating functionally similar antiseptics. In those cases where the slopes of the regression lines are not parallel, the Phelps' concentration exponent provides information as to the comparable rate of increase in antibacterial action with increasing concentration. In the case examined here phenylmercuric acetate is superior to o-chloromercuriphenol, but the reverse occurs when the assessment is carried out in the absence of protein.

The problem of "bacteriostatic carry-over" may be met by the presence of specific reversing agents, contained in both the diluting and counting media. The insolubility of mercuric sulphide indicated that "thiol" compounds were potential inactivators in the case of the mercurial antiseptics and, of the several compounds examined, glutathione and 2:3-dimercaptopropanol are the most active. Glutathione is the more preferable of the two, however, owing to its greater convenience in manipulation.

Estimates of the acute toxicity (LD50) show that phenylmercuric acetate is more toxic than o-chloromercuriphenol by both the intravenous and subcutaneous routes. The toxicities are, however, of the same order and correlate with those of Wien¹⁶ for the nitrate. The difference is unlikely to be of significance in pharmaceutical preparations incorporating either of the two compounds.

SUMMARY

1. Phenylmercuric acetate possesses a greater in vitro antibacterial activity than o-chloromercuriphenol.

2. Glutathione and 2:3-dimercaptopropanol (BAL) are more effective inactivators of mercurial antiseptics than thioglycollic acid and cystine or cysteine hydrochlorides.

The rate of increase of antibacterial efficiency with increasing con-3. centration is high for both compounds, but phenylmercuric acetate is to be preferred in view of its greater activity in the presence of proteins.

The use of concentration exponents is suggested for the comparative evaluation of potential antiseptics of similar properties or chemical structure.

5. Phenylmercuric acetate is more toxic than ρ -chloromercuriphenol following intravenous or subcutaneous administration.

The author thanks Dr. G. Brownlee for his help in the preparation of the paper.

References

- Whitmore and Hanson, Organic Syntheses, Wiley. New York, 1925, 4, 13.
 Neogi and Chatterji, J. Indian chem. Soc., 1928. 5, 221.
 Fargher, Galloway and Probert, J. Text. Inst., Manchr., 1930, 21, 245.

O-CHLOROMERCURIPHENOL AND PHENYLMERCURIC ACETATE

- 4. Galloway, ibid., 1930, 21, 277.
- 5. Hart and Anderson, J. Amer. chem. Soc., 1935, 57, 1059.
- Anderson and Hart, ibid., 1937, 59, 1115. 6.
- 7. McClusky and Swingle, Iowa St. Coll. J. Sci., 1937, 11, 177.
- Hibbert (To Interlake Tissue Mills Co., Ltd.), 1939, Canadian Patent 381, 287. 8.
- 9. Weed and Ecker, J. infect. Dis., 1931. 49, 440.
- Otto, J. prakt. Chem. (sect. 2), 1870. 1, 179. 10. 11. Weed and Ecker, J. infect. Dis., 1932. 51, 309.
- 12. Birkhaug, ibid., 1933, 53, 250.
- 13.
- Pyman and Stevenson, Pharm. J., 1934, 133, 269. 14.
- Baker, Ranson and Tynen, Lancet, 1938, 235, 882.
- Berry, Jensen and Siller, Quart. J. Pharm. Pharmacol., 1938. 11. 729. 15.
- 16.
- Wien, *ibid.*, 1939, **12**, 212. Fust, Schweiz. med. Wschr., 1945, 75, 487. 17.
- 18. Withell, J. Hyg., Camb., 1942, 42, 339.
- 19. Phelps, J. infect. Dis., 1911, 8, 27.
- 20. Stark and Montgomery, J. Bact., 1935, 29, 6.
- 21. Mirimanoff and Masset, Hundert Jahre Schweizerische Apotheker Verein 1843-1943, Pharm. Acta Helvet., 1943, 18, 487.
- 22. 23.
- MacLeod, J. exp. Med., 1940, 72, 217. Fildes, Brit. J. exp. Path., 1940, 21, 67. Graydon and Biggs, Med. J. Aust., 1942, 2, 513. 24.
- 25. Heinemann, J. Amer. pharm. Ass., Sci., Ed., 1943, 32, 298.
- 26. Smith, Czarnetsky and Mudd, Amer. J. med. Sci., 1936, 142, 790.
- 27. Peters, Stocken and Thompson, Nature, 1945, 156, 616.
- 28.
- Waters and Stock, Science, 1945, 102, 601. Danielli, Danielli, Mitchell, Owne and Shaw, Nature. 1946, 157, 217. 29.
- 30. Long and Farah, Science, 1946, 104, 220.
- 31. Gaddum, Spec. Rep. Ser. med. Res. Counc., Lond., 1933. No. 183, 33.
- 32. McEwen and MacMorran, Chem. & Drugg., 1947, 147, 402.